Tracked shipping to Austria with premium packaging for just €3,99 

Ship to
Austria
0
  • argentina
  • chile
  • colombia
  • españa
  • méxico
  • perú
  • estados unidos
  • internacional

Select your country

Americas

Europe

Rest of the world

portada Text Mining with Machine Learning: Principles and Techniques
Type
Physical Book
Publisher
Language
English
Pages
352
Format
Hardcover
Dimensions
23.9 x 16.0 x 2.3 cm
Weight
0.79 kg.
ISBN13
9781138601826
Edition No.
1

Text Mining with Machine Learning: Principles and Techniques

Jan Zizka (Author) · Frantisek Dařena (Author) · Arnost Svoboda (Author) · CRC Press · Hardcover

Text Mining with Machine Learning: Principles and Techniques - Zizka, Jan ; Dařena, Frantisek ; Svoboda, Arnost

New Book Imported to Austria *
Delivery: 20 Feb - 25 Feb Shipping: 7 to 9 business days.
238,66 €
* Import costs and 10% VAT included in the price ✅
238,66 €
Delivery to any Austria address between Friday, February 20 and Wednesday, February 25

Synopsis "Text Mining with Machine Learning: Principles and Techniques"

This book provides a perspective on the application of machine learning-based methods in knowledge discovery from natural languages texts. By analysing various data sets, conclusions which are not normally evident, emerge and can be used for various purposes and applications. The book provides explanations of principles of time-proven machine learning algorithms applied in text mining together with step-by-step demonstrations of how to reveal the semantic contents in real-world datasets using the popular R-language with its implemented machine learning algorithms. The book is not only aimed at IT specialists, but is meant for a wider audience that needs to process big sets of text documents and has basic knowledge of the subject, e.g. e-mail service providers, online shoppers, librarians, etc.The book starts with an introduction to text-based natural language data processing and its goals and problems. It focuses on machine learning, presenting various algorithms with their use and possibilities, and reviews the positives and negatives. Beginning with the initial data pre-processing, a reader can follow the steps provided in the R-language including the subsuming of various available plug-ins into the resulting software tool. A big advantage is that R also contains many libraries implementing machine learning algorithms, so a reader can concentrate on the principal target without the need to implement the details of the algorithms her- or himself. To make sense of the results, the book also provides explanations of the algorithms, which supports the final evaluation and interpretation of the results. The examples are demonstrated using realworld data from commonly accessible Internet sources.

Customers reviews

Frequently Asked Questions about the Book

All books in our catalog are Original.
The book is written in English.
The binding of this edition is Hardcover.

Questions and Answers about the Book

Do you have a question about the book? Login to be able to add your own question.

Opinions about Bookdelivery

More customer reviews